
2
Understanding the

Declarative Paradigm

Jetpack Compose marks a fundamental shift in Android UI development. While the traditional view-based
approach is centered on components and classes, the new framework follows a declarative approach.

In Chapter 1, Building Your First Compose App, I introduced you to composable functions, the basic
building blocks of a Compose-based UI. In this chapter, we will briefly review how Android UIs are
implemented with traditional classes and techniques. You will learn about some issues of this approach,
and how a declarative framework helps overcome them.

The main sections of this chapter are set out as follows:

•	 Looking at the Android view system

•	 Moving from components to composable functions

•	 Examining architectural concepts

We’ll start by looking at my second sample app, HelloView. It is a re-implementation of the Hello
app from Chapter 1, Building Your First Compose App. HelloView uses views, an XML layout file,
and view binding.

Next, we will cover key aspects of components, which are UI building blocks in the view-based world.
You will learn about the similarities and differences of composable functions, and we will find out
how composable functions can overcome some of the limitations of component-centric frameworks.

Finally, we will look at the different layers of the Android framework and how they relate to building
UIs. By the end of this chapter, you will have gathered enough background information to explore
the key principles of Jetpack Compose, which is the topic of the next chapter.

Understanding the Declarative Paradigm2

Technical requirements
Please refer to the Technical requirements section of Chapter 1, Building Your First Compose App, for
information about how to install and set up Android Studio and how to get the sample apps. This
chapter covers the HelloView and Factorial samples.

The code examples for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Android-UI-development-with-Jetpack-Compose-2nd-
edition.

Looking at the Android view system
The traditional approach to building Android UIs is to define component trees and modify them
during runtime. While this can be done completely programmatically, the preferred way is to create
layout files. They use XML tags and attributes to define which UI elements should be presented on
screen. Let’s take a look:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
  xmlns:app="http://schemas.android.com/apk/res-auto"
  android:layout_width="match_parent"
  android:layout_height="match_parent">

  <TextView
    android:id="@+id/message"
    style="@style/TextAppearance.Material3.BodyLarge"
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:textAlignment="center"
    app:layout_constraintBottom_toBottomOf="parent"
    app:layout_constraintBottom_toTopOf="@id/name"
    app:layout_constraintEnd_toEndOf="parent"
    app:layout_constraintHorizontal_bias="0.5"
    app:layout_constraintStart_toStartOf="parent"
    app:layout_constraintTop_toTopOf="parent"
    app:layout_constraintVertical_bias="0.5"
    app:layout_constraintVertical_chainStyle="packed" />
  ...
</androidx.constraintlayout.widget.ConstraintLayout>

Layout files define a hierarchical structure (a tree). In the previous XML snippet, the root node
(ConstraintLayout) contains only one child (TextView). The complete XML file of HelloView

https://github.com/ PacktPublishing/Android-UI-development-with-Jetpack-Compose-2nd-edition
https://github.com/ PacktPublishing/Android-UI-development-with-Jetpack-Compose-2nd-edition
https://github.com/ PacktPublishing/Android-UI-development-with-Jetpack-Compose-2nd-edition

Looking at the Android view system 3

has two more children, an EditText component and a Button component. Layout files of real-
world apps can be quite nested, containing dozens of children.

Generally speaking, ...Layout elements are responsible for sizing and positioning their children.
While they may have a visual representation (for example, a background color or a border), they
usually don’t interact with the user. ScrollView is one of the exceptions to that rule. All other
(non-...Layout) elements such as buttons, checkboxes, and editable text fields not only allow
user interaction—it’s their purpose.

Both layout and non-layout elements are called components. We will return to this term in the
Moving from components to composable functions section. But before that, let’s see how layout files
are used in apps.

Inflating layout files

Activities are one of the core building blocks of an Android app. They implement a quite sophisticated
lifecycle, which is reflected by a couple of methods we can override.

Typically, onCreate() is used to prepare the app and to show the UI by invoking setContentView().
This method can receive an ID representing a layout file—for example, R.layout.main. Because
of this, you must define variables pointing to the UI elements you wish to access. This may look like
the following:

private lateinit var doneButton: Button
...
val doneButton = findViewById(R.id.done)

It turned out that this doesn’t scale well for bigger apps. There are two important issues to remember:

•	 You may face crashes during runtime if the variable is accessed before it has been initialized

•	 The code quickly becomes lengthy if you have more than a few components

Sometimes, you can prevent the first issue by using local variables, as follows:

val doneButton = findViewById<Button>(R.id.done)

This way, you can access the UI element immediately after the declaration. However, the variable exists
only in the scope in which it has been defined—a block or a function. This may be problematic because
you often need to modify a component outside onCreate(). That’s because, in a component-based
world, you modify the UI by modifying the properties of a component. It turned out that often the
same set of changes are necessary for different parts of the app, so to avoid code duplication, they are
refactored into methods, which need to know the component to change it.

Understanding the Declarative Paradigm4

To solve the second issue—that is, to spare the developer from the task of keeping references to
components—Google introduced view binding. It belongs to Jetpack and debuted in Android Studio
3.6 (this version was released quite a while ago, in February 2020). Let’s see how view binding is used:

class MainActivity : AppCompatActivity() {

  private lateinit var binding: MainBinding

  override fun onCreate(savedInstanceState: Bundle?) {
    super.onCreate(savedInstanceState)
    binding = MainBinding.inflate(layoutInflater)
    setContentView(binding.root)
    ...
    enableOrDisableButton()
  }
  ...
}

No matter how complex the UI of an activity is, we need to keep only one reference. This variable is
usually called binding, which is initialized by invoking the inflate() function of a ...Binding
instance. The MainBinding class in my example is automatically generated and updated when
main.xml is modified. Every layout file gets a corresponding ...Binding class. To enable this
mechanism, the viewBinding build option must be set to true in the module-level build.
gradle file:

android {
  ...
  buildFeatures {
    viewBinding true
  }
}

So, after you have inflated a layout file by invoking ...Binding.inflate() and assigned it to an
instance variable, you can access all its components via their IDs using this variable. IDs are set using
the android:id XML attribute (for example, android:id="@+id/message").

Important note
There is an important difference between the old-fashioned findViewById() function and
view binding. If you use the latter one, you must pass the root component (binding.root)
to setContentView(), rather than an ID representing the layout file (R.layout.main).

In this section, I have shown you how to obtain references to UI elements. The next section, Modifying
the UI, will explain how to make use of this.

Looking at the Android view system 5

Modifying the UI

In this section, we will see how to make changes to a view-based UI. Let’s start by looking at the
enableOrDisableButton() function, which is invoked in onCreate(). Its name gives you
a clue regarding its purpose—enabling or disabling a button. But why do we need this? HelloView
is a reimplementation of the Hello app from Chapter 1, Building Your First Compose App, but it has
one additional feature. As long as the user has not entered at least one non-blank character, Done
can’t be clicked:

private fun enableOrDisableButton() {
  binding.done.isEnabled = binding.name.text.isNotBlank()
}

binding.done refers to the button during runtime. It can be clicked only if isEnabled is true.
The text input field is denoted by binding.name. Its text property reflects what the user has
already entered. isNotBlank() tells us whether at least one non-whitespace character is present.

In the code I have shown you so far, enableOrDisableButton() is called only at the end of
onCreate(). But we also need to invoke the function whenever the user has input something. Let’s
see how to do this (please note that the following code snippets belong inside onCreate() so that
they are executed when the activity is created):

binding.name.run {
  setOnEditorActionListener { _, _, _ ->
    binding.done.performClick()
    true
  }
  doAfterTextChanged {
    enableOrDisableButton()
  }
  visibility = VISIBLE
}

Text input fields can modify certain aspects of the onscreen keyboard. For example, to have it show
a Done key instead of the usual Enter, we add an android:imeOptions="actionDone"
attribute to the layout file. To react to clicks on this key, we need to register the code by invoking
setOnEditorActionListener(). Then, binding.done.performClick() simulates
clicks on the Done button. You will see shortly why I do this.

The lambda function we pass to doAfterTextChanged() is invoked every time the user enters
or deletes something in the text input field. When this happens, enableOrDisableButton()
is called, which makes the button clickable if the text currently present in the input field is not blank.

Finally, visibility = VISIBLE occurs inside binding.name.run {, so it makes the text
input field visible. This is the desired state when the activity is created.

Understanding the Declarative Paradigm6

Now, let’s turn to code related to the Done button:

binding.done.run {
  setOnClickListener {
    val name = binding.name.text
    if (name.isNotBlank()) {
      binding.message.text = getString(R.string.hello,
                                       name)
      binding.name.visibility = GONE
      it.visibility = GONE
    }
  }
  visibility = VISIBLE
}

When Done is clicked, we test whether the text input field contains at least one character besides
whitespace. If this is the case, the greeting message will be constructed and displayed. Also, both the
button and the text input field are hidden; they need to disappear after the user has entered a name
because then, only the greeting message should be visible. Making a component visible or invisible
is done by modifying the visibility property: visibility = VISIBLE makes the Done
button visible. This is the desired state when the activity is created.

Do you remember that I promised to explain why I invoke performClick() inside the lambda
function for setOnEditorActionListener? This way, I can reuse the code inside the button
listener without refactoring it into a separate function and calling it instead, which is certainly a
viable alternative.

Before we move on, let’s recap what have we seen so far:

•	 The UI is defined in an XML file

•	 At runtime, it is inflated to a component tree

•	 To change the UI, attributes of all related components must be modified

•	 Even if a UI element is not visible, it remains part of the component tree

This is why common UI frameworks are called imperative. Any change to the UI is done by deliberately
modifying the attributes of all components involved. As you can see in my example, this works quite
well for small apps. But the more UI elements an app has, the more demanding it will be to keep track
of such changes. Let me explain. Changes in domain data (adding an item to a list, deleting text, or
loading an image from a remote service) require changes in the UI. The developer needs to know
which portion of domain data relates to which UI element and must then modify the component tree
accordingly. The bigger an app becomes, the more difficult this is.

Moving from components to composable functions 7

Also, without clear architectural guidance, the code for changing the component tree almost always
eventually mixes with code that modifies the data the app is using. This makes it even more demanding
and error-prone to maintain and further develop the app.

In the next section, we will turn to composable functions. You will learn how they differ from
components and why this helps overcome weaknesses in the imperative approach.

Moving from components to composable functions
So far, I explained the word component by saying that it refers to UI elements. In fact, the term is used
in quite a few other areas. Generally speaking, components structure systems by separating distinct
portions or parts of them. The inner workings of a component are typically hidden from the outside
(known as the black box principle).

Tip
To learn more about the black box principle, please refer to https://en.wikipedia.
org/wiki/Black_box.

Components communicate with other parts of the system by sending and receiving messages. The
appearance or behavior of a component is controlled through a set of attributes, or properties.

Consider TextView. We set text by modifying the text property and we control its visibility through
visibility. What about sending and receiving messages? Let’s look at Button. We can react to
clicks (receive a message) by registering (sending a message) an OnClickListener instance. The
same principle applies to EditText. We configure its appearance by setting properties (text), send
a message by invoking setOnEditorActionListener(), and receive one through the lambda
expression we passed as a parameter.

Message-based communication and configuration via properties make components very tool-friendly. In
fact, most component-based UI frameworks work well with drawing board-like editors. The developer
defines a UI using drag and drop. Components are configured using property sheets. Figure 2.1 shows
the Layout Editor in Android Studio. You can switch between a Design view, browse Code (an XML
file), or a combination of both (Split):

https://en.wikipedia.org/wiki/Black_box
https://en.wikipedia.org/wiki/Black_box

Understanding the Declarative Paradigm8

Figure 2.1 – The Layout Editor in Android Studio

We now have a more precise understanding of how the term component is used in the context of UIs.
Building on this foundation, we will now look at component hierarchies.

Component hierarchies

If you compare the XML attributes of ConstraintLayout, TextView, and EditText, you
will find unique attributes per tag, one example being android:inputType. On the other hand,
android:layout_width and android:layout_height are present in all three tags, defining
the size of the corresponding element. Size and position are relevant for all components.

Yet, specific attributes influence visual appearance or behavior; this is not relevant for all kinds of UI
elements, only a subset. Here’s an example: text fields and buttons will want to show or receive text.
A FrameLayout UI element won’t. Think of it this way: the more specialized an attribute is, the less
likely is its reuse in another component. However, general ones (such as width, height, location,
or color) will be needed in most UI elements.

Based on its attributes, each component has a level of specialization. For example, EditText is more
specific than TextView because it can handle text input. Button is a general-purpose button;
clicking on it triggers some action. On the other hand, a CheckBox component can be either checked
or unchecked. This type of button can represent two states. A Switch component has two states,
too. It’s a toggle switch widget that can select between two options.

Moving from components to composable functions 9

The degree of specialization can be modeled easily in object-oriented programming (OOP) languages
through inheritance. A more specialized UI element (class) extends a general element. Therefore, many
often-used UI frameworks have been implemented in Java, C++, or C# (OO languages). It is important
to note, though, that component-like concepts can be achieved with other types of programming
languages too. So, object orientation may be considered a benefit, but it’s not a necessity.

At this point, you may be thinking, Didn’t he mix two different things? How are tags and attributes of
Android layout files related to classes? Allow me to explain. Earlier, I said that an XML file is inflated
to a component tree. To be more precise, it becomes an object tree. The tags in the XML file represent
class names and their attributes correspond to members of that class. inflate() creates a tree of
objects based on this information.

So, Android layout files describe component trees outside of Java or Kotlin files using a different
syntax (an XML syntax). But they are not declarative in the same way Jetpack Compose is because
layout files define a UI regardless of the current state. For example, they do not take into account
that a button should be disabled because a text field is empty. A Compose UI, on the other hand, is
declared based on that.

The remaining part of this section will look closer at some of Android’s UI components and how they
are related. Before that, let’s recap what we have learned so far:

•	 All Android views are classes

•	 Tags in layout files represent classes, and attributes are their members

•	 inflate() creates an object tree

•	 Changes to the UI are achieved by modifying this tree

Some of Android’s UI elements are quite specific. RatingBar, for example, allows the user to
rate something by selecting a certain number of stars. Others are way more general; for example,
ImageView just displays image resources, and FrameLayout blocks out an area on the screen to
display a stack of children.

To understand how Android’s UI elements are related, let’s look at the ones used in HelloView in
a little more detail. We’ll start with ConstraintLayout:

java.lang.Object
  ↳  android.view.View
     ↳  android.view.ViewGroup
        ↳  androidx.constraintlayout.widget.ConstraintLayout

The root of all classes in Java is java.lang.Object. Significant parts of the Android framework are
based on Java and its class library. So, all views directly or indirectly extend java.lang.Object.
The immediate parent of ConstraintLayout is android.view.ViewGroup, which in turn
is a sibling of android.view.View.

Understanding the Declarative Paradigm10

Now, let’s look at android.widget.Button:

java.lang.Object
  ↳  android.view.View
     ↳  android.widget.TextView
        ↳  android.widget.Button

Its direct ancestor is android.widget.TextView, which extends android.view.View. Are
we seeing a pattern here? android.view.View seems to be the root of all Android UI elements.
Let’s check our hypothesis by examining another component:

java.lang.Object
  ↳  android.view.View
     ↳  android.widget.TextView
        ↳  android.widget.EditText

As you can see, components showing or receiving text usually extend android.widget.TextView,
whose parent is android.view.View.

Important note
android.view.View is the root of all Android UI elements. All components that position
and size their children extend android.view.ViewGroup.

So far, structuring UI elements in a hierarchy based on specialization seems to work well. Unfortunately,
this approach does have limitations. We’ll turn to them in the following section.

Limitations of component hierarchies

Buttons usually show text. Therefore, it seems natural to extend a more general text component. As
we saw in the previous section, Android does just that. What if your app requires a button that has
no text and shows an image instead? In such scenarios, you can use ImageButton:

java.lang.Object
  ↳  android.view.View
     ↳  android.widget.ImageView
        ↳  android.widget.ImageButton

The class extends android.widget.ImageView. This makes sense, as the purpose of this
component is to show just an image, quite like Button and text. But what if we want to show a button
that contains both text and image? The closest common ancestor of ImageButton and an ordinary
text button is android.view.View, the root of the Android UI element hierarchy. Therefore,
everything Button inherits from TextView is not immediately available to ImageButton (and
vice versa).

Moving from components to composable functions 11

The reason is that Java is based upon single inheritance: a class extends exactly one other class. If
Button wanted to take advantage of the features of TextView and ImageView, it would need to
extend both, which it can’t. Does this mean that things would be different if Java supported multiple
inheritance? We could combine the behavior of several components, but we still wouldn’t be able to
reuse functionality tied to individual attributes, methods, or sets of them. Let’s see why this is important.

The View class knows about padding (providing space to the inside of its bounds) but not about margins
(space to the outside of its bounds). Margins are defined in ViewGroup. Hence, if a component wants
to use them, it must extend ViewGroup. But in doing so, it inevitably inherits all other features of
this class (for example, the ability to lay out children), regardless of whether it needs them or not. The
underlying issue is that in a component-centric framework, the combination of individual features of
one or more components to create a more specialized UI element is not possible because you cannot
cut out these features. The reason for this is that reuse happens at a component level.

To make individual features reusable, we need to put aside—or at least modify—the notion of components.
That’s what, for example, Flutter (the very successful cross-platform alternative to Jetpack Compose)
does. Its UI framework is fully declarative and still class-based. Flutter relies on a simple principle
called composition over inheritance. This means the look and the behavior of a UI element (and
the complete UI) are defined by combining simple building blocks, such as Container, Padding,
Align, or GestureDetector, rather than modifying a parent.

In Jetpack Compose, we combine simple building blocks too. Instead of classes, we use composable
functions. Before we turn to them, I would like to briefly show you another potential issue with components.

As you have seen, in class-based UI component frameworks, specialization is modeled through
inheritance. The specialized version of a class (which may have new features, a new look, or behave
slightly differently than the ancestor) extends a more general version of the class. However, most OOP
languages provide means to prohibit this; for example, if a Java class is marked final or a Kotlin
class is not open, they cannot be extended.

So, the framework developer can make a deliberate decision to prevent further inheritance. android.
widget.Space, a lightweight View subclass to create gaps between UI elements, is final. The same
applies to android.view.ViewStub. It’s an invisible, zero-sized View subclass used to lazily
inflate layout resources at runtime. Fortunately, most of Android’s UI elements can be extended. And
for both examples, it seems unlikely that we would want to extend them. Hence, you may not face this
potential issue at all. The point is that in a framework based on composition rather than inheritance,
it doesn’t matter.

Composing UIs with functions

Now, it’s time to return to composable functions. In this section, we will look at my sample Factorial
app (Figure 2.2). When the user picks a number between 0 and 9, its factorial (the product of it and
all the integers below it greater than 0) is computed and output, like so:

Understanding the Declarative Paradigm12

Figure 2.2 – The Factorial app

Here is the simple function that creates the output text:

fun factorialAsString(n: Int): String {
  var result = 1L
  for (i in 1..n) {
    result *= i
  }
  return "$n! = $result"
}

The factorial of an n non-negative integer value is the product of all positive integers less than or equal
to n. So, the result can be computed easily by multiplying all integers between 1 and n. Please note that
the maximum value of a Kotlin Long type is 9,223,372,036,854,775,807. Hence, my implementation
does not work if result would need to be bigger than that.

Moving from components to composable functions 13

Next, I’ll show you how the UI is composed:

@Composable
fun Factorial() {
  var expanded by remember { mutableStateOf(false) }
  var text by remember {
    mutableStateOf(
      factorialAsString(0)
    )
  }
  Box(
    modifier = Modifier.fillMaxSize(),
    contentAlignment = Alignment.Center
  ) {
    Text(
      modifier = Modifier.clickable {
        expanded = true
      },
      text = text,
      style = MaterialTheme.typography.headlineMedium
    )
    DropdownMenu(
      expanded = expanded,
      onDismissRequest = {
        expanded = false
      }) {
      for (n in 0 until 10) {
        DropdownMenuItem(onClick = {
          expanded = false
          text = factorialAsString(n)
        },
          text = {
            Text("$n!")
          }
        )
      }
    }
  }
}

The Factorial() composable function contains one predefined composable, Box(), which in
turn has two children, Text() and DropdownMenu(). I briefly introduced you to Text() and
Box() in Chapter 1, Building Your First Compose App. So, let’s concentrate on DropdownMenu().

Understanding the Declarative Paradigm14

A drop-down menu (the equivalent of a Spinner view) displays a list of entries in a compact way.
It appears upon interaction with an element, such as the following:

•	 An icon or a button

•	 When the user performs a specific action

In my example, the Text() composable must be clicked.

The content of a menu can either be provided by a forloop statement or by adding it one by one.
Often, but not necessarily, DropdownMenuItem() is used. If the menu is expanded (that is, open
or visible), it is controlled by the expanded parameter. onDismissRequest is used to react to
closing the menu without selecting something. DropdownMenuItem() receives a click handler
via the onClick parameter. That code is executed when the item is clicked.

So far, I have presented quite a lot of information about composable functions to you. Before we move
on, let’s recap what we know so far:

•	 The entry point of a Compose UI is a composable function

•	 From there, other composable functions are called

•	 Often, composable functions receive content that is other composables

•	 The order of invocation controls where a UI element will be in relation to other UI elements

Let’s continue with how Factorial() works. It defines two variables, expanded and text.
But how are they used? While an Android layout file defines a component tree in its initial state, a
composable UI is always declared using actual data. This means that there is no need to set up or
prepare the UI before it can be displayed for the first time. Whenever it is displayed, it looks the way
you want. Let’s see how this works.

Most composable functions are configured by a set of parameters. Some of them are mandatory; others
can be omitted. The important thing is that the composable is always called with actual values. On the
other hand, components (that is, views) are initialized when they are created, and they remain this way
until they are deliberately changed by altering the value of properties. That’s why an app needs to keep
references to all components (UI elements) it wishes to modify. But how is a Compose UI updated?

The process of updating a Compose UI is called recomposition. It takes place automatically whenever
a composable function being part of the UI needs to be updated. This is the case when some of the
values that influence its look or behavior (parameters) change. If you always pass the same text
to Text(), there is no need to recompose it. If, on the other hand, you pass something Jetpack
Compose knows it can change, the Compose runtime will initiate an update—a recomposition, when
that change happens. Values that change over time are called state. You can create state, for example,
using mutableStateOf(). To refer to state in a composable, you need to remember it in that
composable function.

Examining architectural aspects 15

Both expanded and text contain state. When these variables are used as parameters for composable
functions, those composables will be recomposed whenever the value of these variables changes. Setting
expanded to true brings the drop-down menu on the screen immediately. This is done inside a
lambda function passed to clickable {}. I will be discussing this in the next section. Giving text
a new value changes the display of Text() because we pass the text variable as the value of the
parameter of the same name. This happens, for example, inside the code block passed to onClick.

Getting rid of a component tree (that needs to be updated deliberately) in favor of declaring a UI
based on state and thus getting updates upon state changes for free is possibly one of the most exciting
advantages of the declarative approach. In the next section, I will explain a few more architectural
principles of component-based and declarative UI frameworks.

Examining architectural aspects
In the Component hierarchies section, I showed you that component-based UI frameworks rely on
specialization. General features and concepts are implemented in the root component or one of its
immediate successors. Such general features include the following:

•	 Location and size on screen

•	 Basic visual aspects such as background (color)

•	 Simple user interactions (reacting to clicks)

Any component will provide these features, either in a specialized way or in its basic implementation.
Android’s view system is class-based, so changing functionality is done by overriding the methods
of the parent.

Composable functions, on the other hand, do not have a shared set of properties. By annotating a
function with @Composable, we make certain parts of Jetpack Compose aware of it. But besides
not specifying a return type, composables seem to have few things in common. However, this would
have been a pretty short-sighted architectural decision. In fact, Jetpack Compose makes providing a
simple, predictable API really easy. The remaining part of this section illustrates this by showing you
how to react to clicks, and how to size and position UI elements.

Reacting to clicks

Android’s View class contains a method called setOnClickListener(). It receives a View.
OnClickListener instance. This interface contains one method, onClick(View v). The
implementation of this method provides the code that should be executed when the view is clicked.
Additionally, there is a view property called clickable. It is accessed through setClickable()
and isClickable(). If clickable is set to false after the listener has been set, the click event
will not be delivered (onClick() is not called).

Understanding the Declarative Paradigm16

Jetpack Compose can provide click handling in two ways. Firstly, composable functions that require it
(because it is a core feature for them) have a dedicated onClick parameter. Secondly, composables
that usually do not require click handling can be amended with a modifier. Let’s start with the first one:

@Composable
@Preview
fun ButtonDemo(enabled: Boolean = true) {
  Box {
    Button(
      onClick = {
        println("clicked")
      },
      enabled = enabled
    ) {
      Text("Click me!")
    }
  }
}

onClick is mandatory; you must provide it. The enabled parameter controls if the button reacts
to user interactions. If you want to show the button but the user should not be able to click it, just
set it to false.

Figure 2.3 shows what the button looks like when enabled is true and false:

Figure 2.3 – A button with enabled = true and false

Text() doesn’t have an onClick property. If you want to make it clickable (as I do in the Factorial
app), you pass clickable { ... } to the modifier parameter, like so:

modifier = Modifier.clickable { ... }

Modifiers, as their name suggests, provide an infrastructure for influencing both the visual appearance
and behavior of composable functions. I will show you another example of modifiers in the next section.
Chapter 3, Exploring the Key Principles of Compose, covers them in much greater detail.

Examining architectural aspects 17

Sizing and positioning UI elements

In component-centric UI frameworks, size and location on screen (or relative to another component)
are core properties. They are defined in the root component (on Android, the View class). Descendants
of ViewGroup size and position their children by changing their corresponding properties. For
example, RelativeLayout is based upon instructions such as toStartOf, toEndOf, or below.
FrameLayout draws its children in a stack, and LinearLayout lays out children horizontally
or vertically. So, ...Layouts are containers with the ability to size and position their children.

Jetpack Compose has a very similar concept. You have already learned about Row() and Column(),
which lay out their content horizontally or vertically. Box() is similar to FrameLayout. It
organizes its content in the order it appears in code. The position inside the box is controlled
by contentAlignment:

@Composable
@Preview
fun BoxDemo() {
  Box(contentAlignment = Alignment.Center) {
    Box(
      modifier = Modifier
        .size(width = 100.dp, height = 100.dp)
        .background(Color.Green)
    )
    Box(
      modifier = Modifier
        .size(width = 80.dp, height = 80.dp)
        .background(Color.Yellow)
    )
    Text(
      text = "Hello",
      color = Color.Black,
      modifier = Modifier.align(Alignment.TopStart)
    )
  }
}

Understanding the Declarative Paradigm18

The content may override this by using modifier = Modifier.align(), the result of which
we can see in Figure 2.4:

Figure 2.4 – An invisible box containing two colored boxes and text

Modifiers can also be used to request a size. In some of my examples, you may have spotted Modifier.
fillMaxSize(), which makes the composable as big as possible. Modifier.size() requests
a particular size. Modifiers can be chained. The root of such a chain is the Modifier companion
object. Subsequent modifiers are added using a dot.

Before closing this chapter, I would like to emphasize the benefits of the modifier concept with one
more example. Did you notice the background() modifiers of the first and second content boxes?
This modifier allows you to set a background color for any composable function. When you need
something a composable function does not offer out of the box, you can add it with a modifier. As you
can write custom modifiers, the possibilities to adjust a composable to your needs are almost endless.
I will elaborate on this in the next chapter.

Summary
In this chapter, you have learned about key elements of component-centric UI frameworks. We saw
some of the limitations of this approach and how the declarative paradigm can overcome them. For
example, specialization takes place on a component level. If the framework is based on inheritance,
the distribution of features to children may be too broad. Jetpack Compose tackles this with the
modifier mechanism, which allows us to amend functionality at a very fine-grained level; this means
that composables only get the functionality they need (for example, a background color).

The remaining chapters of this book are solely based on the declarative approach. In Chapter 3,
Exploring the Key Principles of Compose, we will take an even closer look at composable functions
and examine the concepts of composition and recomposition. And, as promised, we will also dive
deep into modifiers.

Exercise 19

Exercise
Android Studio offers an Interactive Mode for composable functions. This is great to see how they
react to user input:

Figure 2.5 – Interactive Mode

Please give Interactive Mode a try and answer the following questions:

1.	 What happens if you click inside the preview area when Interactive Mode is not active?

2.	 What is the difference between Interactive Mode and Run Preview?

